31 research outputs found

    Computer analysis of composite documents with non-uniform background.

    Get PDF
    The motivation behind most of the applications of off-line text recognition is to convert data from conventional media into electronic media. Such applications are bank cheques, security documents and form processing. In this dissertation a document analysis system is presented to transfer gray level composite documents with complex backgrounds and poor illumination into electronic format that is suitable for efficient storage, retrieval and interpretation. The preprocessing stage for the document analysis system requires the conversion of a paper-based document to a digital bit-map representation after optical scanning followed by techniques of thresholding, skew detection, page segmentation and Optical Character Recognition (OCR). The system as a whole operates in a pipeline fashion where each stage or process passes its output to the next stage. The success of each stage guarantees that the operation of the system as a whole with no failures that may reduce the character recognition rate. By designing this document analysis system a new local bi-level threshold selection technique was developed for gray level composite document images with non-uniform background. The algorithm uses statistical and textural feature measures to obtain a feature vector for each pixel from a window of size (2 n + 1) x (2n + 1), where n ≥ 1. These features provide a local understanding of pixels from their neighbourhoods making it easier to classify each pixel into its proper class. A Multi-Layer Perceptron Neural Network is then used to classify each pixel value in the image. The results of thresholding are then passed to the block segmentation stage. The block segmentation technique developed is a feature-based method that uses a Neural Network classifier to automatically segment and classify the image contents into text and halftone images. Finally, the text blocks are passed into a Character Recognition (CR) system to transfer characters into an editable text format and the recognition results were compared to those obtained from a commercial OCR. The OCR system implemented uses pixel distribution as features extracted from different zones of the characters. A correlation classifier is used to recognize the characters. For the application of cheque processing, this system was used to read the special numerals of the optical barcode found in bank cheques. The OCR system uses a fuzzy descriptive feature extraction method with a correlation classifier to recognize these special numerals, which identify the bank institute and provides personal information about the account holder. The new local thresholding scheme was tested on a variety of composite document images with complex backgrounds. The results were very good compared to the results from commercial OCR software. This proposed thresholding technique is not limited to a specific application. It can be used on a variety of document images with complex backgrounds and can be implemented in any document analysis system provided that sufficient training is performed.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A445. Source: Dissertation Abstracts International, Volume: 66-02, Section: B, page: 1061. Advisers: Maher Sid-Ahmed; Majid Ahmadi. Thesis (Ph.D.)--University of Windsor (Canada), 2004

    Preprocessing Techniques in Character Recognition

    Get PDF

    Assessment of Wireless Technologies for deployment in Intelligent Transportation System based on Internet of Things

    Get PDF
    Use of Internet of Things (IoT) with modern wireless network is a trend of the emerging technologies for different systems which can be deployed in various kinds of environment to monitor, communicate with or control the associated elements in the system. The activities e.g., monitoring and communication by IoT can play an important role to design an Intelligent Transportation System (ITS). In this paper, we assess the suitability of IoT enabled wireless technology to be used for ITS. We performed some comparative study to find the best wireless technology that provides reliability, low cost, less power consumption and less data latency for next generation ITS.This technology will reduce energy consumption of the deployed IoT devices as well as ensure safety, efficiency and convenient for transportation systems

    Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects

    Get PDF
    In this paper, a new bio-nano-transport model is presented. The effects of first and second order velocity slips, thermal slip, mass slip, and gyro-tactic (torque-responsive) microorganism slip of bioconvectivenanofluid flow from amoving plate under blowing phenomenon are numerically examined. The flow model is expressed by partial differential equations which areconverted to a similar boundary value problem bysimilarity transformations. The boundary value problem is converted to a system of nonlinear equationswhich are then solved by a Matlab nonlinear equation solver fsolveintegrated with a Matlab ODEsolverode15s. The effects of selected control parameters (first order slip, second order slip, thermal slip, microorganism slip, blowing, nanofluid parameters) on the non-dimensional velocity, temperature, nanoparticle volume fraction, density ofmotile micro-organism, skin friction coefficient, heat transfer rate, mass flux of nanoparticles andmass fluxof microorganismsare analyzed. Our analysis reveals that a higher blowing parameter enhances micro-organism propulsion, flow velocityand nano-particle concentration, and increases the associated boundary layerthicknesses. A higher wall slip parameter enhances mass transfer and accelerates the flow. The MATLAB computations have been rigorously validated with the second-order accurate finite difference Nakamura tri-diagonal method.The current study is relevant to microbial fuel cell technologies which combine nanofluid transport, bioconvection phenomena and furthermore finds applications in nano-biomaterials sheetprocessing systems

    Modeling lung functionality in volume-controlled ventilation for critical care patients

    Get PDF
    Mechanical ventilators are the instruments that assist breathing of the patients having respiratory diseases e.g., pneumonia and coronavirus disease 2019 (COVID-19). This paper presents a modified lung model under volume-controlled ventilation to describe the lung volume and air flow in terms of air pressure signal from the ventilator. A negative feedback is incorporated in the model to balance the lung volume that is influenced by a lung parameter called positive end expiration pressure. We partially solved the lung model equation which takes the form of a first-order differential equation and then unknown parameters associated with the model were computed using a nonlinear least-squares method. Experimental data required for parameter identification and validation of the lung model were obtained by running a volume-controlled ventilator connected to a reference device and an artificial lung. The proposed model considering negative feedback achieves a better accuracy than that without feedback as demonstrated by test results. The developed model can be used in intensive care units (ICU) to evaluate mechanical ventilation performance and lung functionality in real-time

    Data Protection Laws

    Get PDF
    Data protection, data privacy, and information privacy are all terms defined as the process of protecting important data/information from corruption, scam, fraud, loss, or compromise. This includes the relationship between the data collection and technology, the public perception and expectation of privacy, and the political as well as legal roots surrounding that data. Therefore, data protection laws aim to provide a balance between the individual’s privacy rights and the proper use of data

    Introduction

    Get PDF
    Authentication is central to any security issue, involving the verification process of the identity of a person or a process to access a secured system. Therefore, authentication is extremely important to guarantee the smooth flow of information without troubles. Authentication process is implemented for data in storage and data in-transit with communication network. Critical systems, e.g., energy, banking and finance, defense, transportation, business process, manufacturing, water system, and emergency services heavily rely on information systems and networks. Authentication has become an integrated part of modern computing and communication technologies, e.g., Internet of Things (IoT), cloud computing, and connected vehicles. This chapter provides an overview of the book, its theme, and purpose by introducing the topics of the book that presents the current technological advances and the new trends in authentication in information security

    Conclusion

    Get PDF
    The book contains theoretical and practical knowledge of state-of-the-art authentication technologies and their applications in big data, IoT, and cloud computing with this technologically connected world. The first six chapters of the book provide the fundamental details of the authentication technologies.The objective of Chapters 7 to 11 is to develop fast and secure algorithms for resource-constrained IoT and cloud computing, while the aim of Chapter 12 is to protect the data by laws and policies. All these chapters include research challenges and future research directions with the evolution of technologies

    Quran search engines: challenges and design requirements

    No full text

    Computational Investigation of Hydromagnetic Thermo-Solutal Nanofluid Slip Flow in a Darcian Porous Medium With Zero Mass Flux Boundary Condition Using Stretching Group Transformations

    Get PDF
    In this paper, hydromagnetic thermo-solutal nanofluid flow past a flat plate embedded in a Darcy porous medium has been investigated considering zero mass flux with velocity and thermal slips boundary conditions. The nanofluid flow is considered as 2D, steady state, incompressible, and laminar. We used a generalized stretching group of transformations to develop the similarity solutions of the model. Using these transformations, the transport equations of the nanofluid flow model are reduced to a system of nonlinear ordinary differential equations (ODEs). Finally, the transformed ODEs are computationally solved using MATLAB nonlinear equation solver "fsolve" and ODE solver "ode15s". Solutions are compared with previously available results and the comparison shows good correlation. Furthermore, the computational results are provided to demonstrate the influence of the dimensionless velocity slip parameter, thermal slip parameter, magnetic field parameter, Brownian motion parameter, thermophoresis parameter, and Darcy number on the dimensionless velocity, temperature, and nanoparticle volume fraction (concentration) fields, as well as on the heat transfer rate and skin friction. It was found that the skin friction factor decreases (increases) while the heat transfer rate increases (decreases) with the velocity (thermal) slip parameter. Both the heat transfer rate and the friction factor increase with the magnetic field and Darcy number
    corecore